Edit: I noticed a small mistake in the formulas below. I’ll try to get it fixed this week.

I visited a railroad museum today, and I saw a display showing how the piston is linked to the train wheel. For fun and learning I wanted to model the basic mathematics of how the linkage moves with the wheel and the piston, without looking up the answer on the Internet. That part seemed very simple:

Since l and p are fixed length, it was a matter of simple trigonometry, as seen above. Then I threw the math into a simple Racket program to simulate the movement. That part not hard, but it took an hour or two to add enough lines and circles to make the graphic look half-way decent. Here is a video recording of it running (about 10 seconds):

One interesting part of the math is the connection point of l and p (see the diagram above). Until you get very long lengths of l, you get something close to the cosine function but not quite the same.

In my geometry studies, I learned that one can get the angle between two vectors with this formula:

I.e., the cosine of the angle equals the dot product of the two vectors over the product of their magnitudes.

Here we get about 1.05 radians or about 60.26 degrees. A cool thing about this formula is it works for vectors of any (matching) dimension, i.e., 3-D coordinates, 4-D coordinates, etc.

This is definitely doable in Emacs Calc, since we have a dot product function, called inner-product (press ‘x inner product’), But doing the angle formula involves a lot of steps, with either stack rotation or storing the vectors in variables. So I wanted to get the angle formula stored as a calc formula. Unfortunately, inner-product itself is only an interactive function, so this was problematic. However, inner-product actual calls another function, inner. So, this formula is possible:

How do you store this formula in Emacs? I could walk you through the steps described in section 18.4 of the Emacs Calc info manual, but the end result is that this code is stored in your ~/.emacs.d/calc.el: